The Prolate Spheroidal Phenomena and Bispectrality
نویسندگان
چکیده
Landau, Pollak, Slepian, and Tracy, Widom discovered that certain integral operators with so called Bessel and Airy kernels possess commuting differential operators and found important applications of this phenomena in time-band limiting and random matrix theory. In this paper we announce that very large classes of integral operators derived from bispectral algebras of rank 1 and 2 (parametrized by lagrangian grassmannians of infinitely large size) have this property. The above examples come from special points in these grassmannians.
منابع مشابه
Tunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملChromatic Series and Prolate Spheroidal Wave Functions
The Ignjatovic theory of chromatic derivatives and series is extended to include other series. In particular series of prolate spheroidal wave functions are used to replace the orthogonal polynomial series in this theory. It is extended further to prolate spheroidal wavelet series that enables us to combine chromatic series with sampling series.
متن کاملOn the Use of Discrete Prolate Spheroidal Windows for Frequency Selective Filter Design
The FIR filter design problem is considered with respect to a combined integrated squared error-Chebyshev error criterion. Truncation of the DTFT of the desired frequency response with tapered windows is introduced and the discrete prolate spheroidal window is shown to be a good window for this purpose, due to its optimal mainlobe width-sidelobe energy tradeoff. The discrete prolate spheroidal ...
متن کاملProlate Spheroidal Wave Functions In q-Fourier Analysis
In this paper we introduce a new version of the Prolate spheroidal wave function using standard methods of q-calculus and we formulate some of its properties. As application we give a q-sampling theorem which extrapolates functions defined on qn and 0 < q < 1.
متن کاملOn the Computation of Infeld's Function Used in Evaluating the Admittance of Prolate Spheroidal Dipole Antennas
The Infeld function expressed in terms of the outgoing prolate spheroidal radial wave function and its derivative, and employed in the expression of the input self-admittance of prolate spheroidal antennas, has accurately been calculated by using a newly developed asymptotic expression for large degree n. This asymptotic power series has been derived by using a perturbation method with a pertur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003